ELC - Electrotechnics T001

Thursday, 10/11/2016 08:30-11:30

ADVANCED LEVEL NATIONAL EXAMINATIONS, 2016, TECHNICAL AND PROFESSIONAL STUDIES

EXAM TITLE: Electrotechnics
OPTION: Electricity (ELC)
DURATION: 3hours

INSTRUCTIONS:

The paper is composed of three (3) main Sections as follows:
Section I: Seventeen (17) compulsory questions. 55 marks
Section II: Attempt any three (3) out of five questions. $\mathbf{3 0}$ mariss
Section III: Attempt any one (1) out of three questions. 15 marks

Note:
Every candidate is required to carefully comply with the above instructions. Penalty measures will be applied on their strict consideration

1. What are the instruments used for measuring the following electrical quantities?
a) Power
b) Resistance
2. What is "Dielectric"?
3. If the amplitude of the waveform of Figure below is $E_{m}=100 \mathrm{~V}$, determine the voltage at 30° and 330°.

4. The conductors of the stator of a generator have a length of 0.5 m . The conductors move through a magnetic field of 0.8 teslas at a speed of $68 \mathrm{~m} / \mathrm{s}$. Find, the amount of induced voltage in each conductor.

2marks
05. What are the factors on which the resistance of a material depends?

4marks
06. A single phase transformer has 500 turns on its primary and 1000 turns on its secondary.
a. Determine its turns ratio. Is it step-up or step-down?
b. If its primary voltage is $e_{p}=25 \sin \omega t \mathrm{~V}$, what is its secondary voltage?
c. Sketch the waveforms.

5marks
07. Write down the expression for reluctance. What is its unit?
08. A 12 -pole, 3 -phase alternator driven at a speed of 500 r.p.m. supplies power to an 8 -pole, 3-phase induction motor. If the slip of the motor, at full-load is 3%, calculate the full-load speed of the motor.

4marks
09. Write down the conditions for production of steady electromagnetic torque for a rotating electrical motor.

3marks
10. An autotransformer has a coil with total number of turns $N_{C D}=200$ between terminals \mathbf{C} and \mathbf{D}. It has got one tapping at \mathbf{A} such that the number of turns $N_{A C}=$ 100 and another tapping at B such that the number of turns $N_{B A}=50$. As shown in figure below. Calculate current and voltage for each resistance of the circuit, when 400 V supply is connected across AC.

4marks
11. Calculate the distribution factor for a 36 -slots, 4 -pole, single-layer three-phase winding.
12. A parallel-plate capacitor with air dielectric has a value of $C=12 \mathrm{pF}$. What is the capacitance of a capacitor that has the following:
a. The same separation and dielectric but five times the plate area?
b. The same dielectric but four times the area and one-fifth the plate spacing?

4marks

13. What do you understand by the 'back e.m.f.'?
14. A d.c. motor connected to a $460-\mathrm{V}$ supply has an armature resistance of 0.15Ω. Calculate:
1) The value of back e.m.f. when the armature current is 120 A . 2marks
2) The value of armature current when the back e.m.f. is 447.4 V . 2marks
15. The maximum flux density in the core of a $250 / 3000-\mathrm{volts}, 50-\mathrm{Hz}$ single-phase transformer is $1.2 \mathrm{~Wb} / \mathrm{m}^{2}$. If the e.m.f. per turn is 8 volt, determine:
a) the primary and secondary turns and
b) the area of the core.

4marks

16. A single-phase transformer has 400 primary and 1000 secondary turns. The net cross-sectional area of the core is $60 \mathrm{~cm}^{2}$. If the primary winding be connected to a $50-\mathrm{Hz}$ supply at 520 V , calculate:
$\begin{array}{ll}\text { A) the maximum value of flux density in the core. } & \text { 2marks } \\ \text { B) the voltage induced in the secondary winding. } & \text { 2marks }\end{array}$
17. A DC motor, when connected to a 100 V source and to no load runs at 1200 rpm . Its stator resistance is 2Ω. What should be the torque and current if it is fed from a 220 V supply and its speed is 1500 rpm ? Assume that the field is constant.

6marks
Section II. Choose and answer any three (3) questions.
18. Three lamps A, B and C, having resistances of $1440 \Omega, 960 \Omega$ and 576 , are connected in parallel to a 240 V supply by a cable of resistance 2Ω Calculate (a) the total circuit resistance, (b) the total current, (c) the cable voltage drop, (d) the voltage across the lamps and (e) the current drawn by each lamp.

10marks
19. Three identical loads each having a resistance of 10Ω and an inductive reactance of 20Ω are connected first in star and then in delta across a $415 \mathrm{~V}, 50 \mathrm{~Hz}$ three-phase supply. Calculate the line and phase currents in each case.

10marks
20. A four-pole cage induction motor is run from a 50 Hz supply and has a slip of 3%. The rotor shaft drives a pulley wheel 300 mm in diameter, which has a tangential force of 200 N exerted upon it. Calculate the power output from the rotor in watts.

10marks
21. A 250 W sodium-vapour street lamp emits a light of 22500 cd and is situated 5 m above the road. Calculate the luminance (a) directly below the lamp and (b) at a horizontal distance along the road of 6 m .

10marks
22. A transformer has 600 primary turns and 150 secondary turns. The primary and secondary resistances are 0.25Ω and 0.01Ω respectively and the corresponding leakage reactance are 1.0Ω and 0.04Ω respectively. Determine (a) the equivalent resistance referred to the primary winding, (b) the equivalent reactance referred to the primary winding, (c) the equivalent impedance referred to the primary winding, and (d) the phase angle of the impedance.

10marks
23. A 400 kVA transformer has a primary winding resistance of 0.5Ω and a secondary winding resistance of 0.001Ω. The iron loss is 2.5 kW and the primary and secondary voltages are 5 kV and 320 V respectively. If the power factor of the load is 0.85 , determine the efficiency of the transformer (a) on full load, and (b) on half load.

15marks
24. A) A single phase a.c. generator supplies the following loads
(i) Lighting load of 20 kW at unity power factor.
(ii) Induction motor load of 100 kW at p.f. 0.707 lagging.
(iii) Synchronous motor load of 50 kW at p.f. 0.9 leading.

Calculate the total kW and kVA delivered by the generator and the power factor at which it works.
B) A 100 MW power station delivers 100 MW for 2 hours, 50 MW for 6 hours and is shut down for the rest of each day. It is also shut down for maintenance for 45 days each year. Calculate its annual load factor.

15marks
25. A) For the double-beam oscilloscope displays shown in figure below determine (a) their frequency, (b) theirr.m.s. values, (c) their phase difference. The time/cm switch is on $100 \mu \mathrm{~s} / \mathrm{cm}$ and the volts $/ \mathrm{cm}$ switch on $2 \mathrm{~V} / \mathrm{cm}$.

B) The power supplied to a three-phase induction motor is 32 kW and the stator losses are 1200 W . If the slip is 5 per cent, determine (a) the rotor copper loss, (b) the total mechanical power developed by the rotor, (c) the output power of the motor if friction and windage losses are 750 W , and (d) the efficiency of the motor, neglecting rotor iron loss.

15marks

